Kathryn Fuller

Candidature

PhD Candidate

Thesis Title

The Biogeography of Fire: Mapping Key Fuel Types Across NSW

Research Project

Bushfires are a major natural hazard in most of Australia and their management is expected to become increasingly difficult under altered future climates and an expanding wildland-urban interface. High operating costs of management and huge financial toll following fires necessitate optimising management strategies for the most cost-effective risk reduction. Fuel management, i.e. reduction of the mass and spatial continuity of flammable plant biomass, is the core component of bushfire management in Australia. However, current methods of assessing fuels and quantifying fire hazard often lack information on the fine-scale variation in the occurrence of species of particular significance to bushfire behaviour, such as ribbonbark and stringybark eucalypts. These species are known to influence the likelihood and distance of spotting. Stringybarks also increase the likelihood of crown fires by increasing vertical fuel continuity. In my thesis I will examine the relationships between occurrences of these species and the environmental variables influencing their distributions in order to better predict fine-scale fuel variability in New South Wales forests and woodlands. Many fuel assessment methods also oversimplify fuel structure, an important element of fuel characterisation. Fuel structure is broadly defined as the physical structure of any flammable vegetation material. Fuel structure, fire weather, fuel moisture content and fuel load interact in complex ways, confounding efforts to explicitly describe the influence of fuel structure on bushfire behaviour. I will use remote sensing to develop new approaches of quantifying fuel structure so that these relationships can be identified and predicted on the landscape. Lastly, I will investigate the contribution of spatial variation in fuel composition and structure on spatial variation in fire severity in areas affected by the 2019/20 fires in eastern Australia. The overarching goal of my research is to improve upon current methods of predicting fuel properties across forested landscapes of New South Wales in order to inform fire management.

Supervisors

A/Professor Matthias Boer, Dr Rachael Nolan, Dr Mike Aspinwall