-
Teaching Support
- - Technology-Enabled Learning
- - WOS Studio
-
- MESH
- - Events, Workshops and Programs
- - Resources by Discipline
-
- Support and Resources by Topic
- - Statistics Help (General)
- - Statistics Help (R Commander)
- - Arithmetic
- - Standard Derivatives
- - Standard Integrals
- - Hyperbolic Trigonometric Functions
- - Remainders and Quotients
- - SPSS Help
- - Logic Basics: AND, OR, NOT
- - Approximations: rounding and truncation
- - Mathematical Terminology
- - Proportional Reasoning
- - Number Sense
- - I Don't Get It
- - Percentages
- - Contact the MESH team
- - MESH Research
- - Resources for Staff
- - Smart Assessment Design Toolkit
- - Placements Hub
- - Digital Learning
- - Academic Integrity
- - Academic Integrity Research
- Professional Learning @ Western
- Curriculum Renewal
- The 21C Project
- Contact Us
- Engaged Teaching
Hyperbolic Trigonometric Functions
The hyperbolic trigonometric functions are an important class of functions used in engineering. For equivalent results about the traditional trigonometric functions see this page.
Information on derivatives of these functions can be found here and integrals here.
A PDF file containing this information can be found here.
Definitions
The hyperbolic trigonometric functions are: $\DeclareMathOperator{\cosec}{cosec}
\DeclareMathOperator{\cosech}{cosech}
\DeclareMathOperator{\sech}{sech}$
Hyperbolic sine: $\displaystyle \sinh x={\frac {e^{x}-e^{-x}}{2}}$ | Hyperbolic cotangent: $\displaystyle \coth x= \frac {\cosh x}{\sinh x}$ |
Hyperbolic cosine: $\displaystyle{\cosh x=\frac {e^{x}+e^{-x}}{2}}$ | Hyperbolic secant: $\displaystyle \sech x= \frac {1}{\cosh x}$ |
Hyperbolic tangent: $\displaystyle \tanh x={\frac {\sinh x}{\cosh x}}$ | Hyperbolic cosecant: $\displaystyle \cosech x= \frac1{\sinh x}$ |
- $\cosech(x)$ is sometimes written as $\operatorname {csch}(x)$
- $\sinh^{-1}(x)$ is sometimes written as $\operatorname{arcsinh}(x)$
- $\sinh^{-1}(x)$ does not mean $\displaystyle{\frac1{\sinh x}}$
Function Identities
Here are some common identities about the trigonometric functions with their hyperbolic trigonometric equivalents:
Trigonometry | Hyperbolic Trigonometry |
---|---|
$\sin(-x)=-\sin x$ | $\sinh(-x)=-\sinh x$ |
$\cos(-x) =\cos x$ | $\cosh(-x) =\cosh x$ |
$\tan(-x)=-\tan x$ | $\tanh(-x)=-\tanh x$ |
Sum and Difference Identities
Trigonometry | Hyperbolic Trigonometry |
---|---|
$\sin(x+y)=\sin x\cos y+\cos x\sin y$ | $\sinh(x+y)=\sinh x\cosh y+\cosh x\sinh y$ |
$\cos(x+y)=\cos x\cos y-\sin x\sin y$ | $\cosh(x+y)=\cosh x\cosh y+\sinh x\sinh y$ |
$\tan(x+y) = \displaystyle{\frac{\tan x+\tan y}{1-\tan x\tan y}}$ | $\tanh(x+y)=\displaystyle{\frac {\tanh x+\tanh y}{1+\tanh x\tanh y}}$ |
$\sin (x-y)=\sin x\cos y-\cos x\sin y$ | $\sinh(x-y)=\sinh x\cosh y-\cosh x\sinh y$ |
$\cos (x-y)=\cos x\cos y+\sin x\sin y$ | $\cosh(x-y)=\cosh x\cosh y-\sinh x\sinh y$ |
$\tan(x-y) = \displaystyle{\frac{\tan x-\tan y}{1+\tan x\tan y}}$ | $\tanh(x-y)=\displaystyle{\frac {\tanh x-\tanh y}{1-\tanh x\tanh y}}$ |
Pythagorean Identity
The Pythagorean identity and it's hyperbolic equivalents:
Trigonometry | Hyperbolic Trigonometry |
---|---|
$\cos^2x+\sin^2x=1$ | $\cosh^2x-\sinh^2x=1$ |
$1+\tan^2x=\sec^2 x$ | $1-\tanh^2x=\sech^2x$ |
$\cot^2x+1=\cosec^2 x$ | $\coth^2x-1=\cosech^2x$ |
Mobile options: