Doctor Chris Blackman

Chris BlackmanDr Chris Blackman is a Research Fellow in the Institute. His research in plant eco-physiology aims to better understand the coordination between water transport and carbon dynamics in plants, both under optimal conditions and in response to environmental stress, especially drought.

Dr Chris Blackman joined Hawkesbury Institute for the Environment as a Post-Doctoral Fellow in Climate Change in January 2014. He is currently working with Prof David Tissue on a project entitled 'Forests for the future: making the most of a high CO2 world' (opens in a new window). The project broadly aims to examine the genetics and physiology of tree species in order to identify potential winners and losers under a future climate of elevated atmospheric CO2 concentrations, warmer temperatures and drought.

Dr Blackman completed his PhD at the University of Tasmania in 2011 under the supervision of Assoc Prof Tim Brodribb and Dr Greg Jordan. His PhD research in plant hydraulics aimed to better understand plant structure and function across a number of different levels, from leaf anatomy, hydraulics and physiology to whole plant responses to drought and their ecological implications. A particularly strong focus of this research was centred on the physiological response of plants to water-stress and the coordination between leaf structure and function in relation to drought resistance.

Moving to Sydney in 2011, Dr Blackman spent two and a half years within the Comparative Ecology Lab at Macquarie University working with Professor Mark Westoby. This work examined how leaf hydraulic vulnerability varies across broad environmental gradients of aridity and contributes to species differences in drought tolerance strategy. It also examined the underlying coordination between vulnerability and key aspects of leaf anatomy and structure.


Duursma RA, Blackman CJ, Lopez R, Martin-StPaul NK, Cochard H, Medlyn BE, (2019) 'On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls', New Phytologist, vol.221, no.2, pp 693-705

Aspinwall MJ, Blackman CJ, de Dios VR, Busch FA, Rymer PD, Loik ME, Drake JE, Pfautsch S, Smith RA, Tjoelker MG, Tissue DT, (2018) 'Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis', Tree physiology, vol.38, no.9, pp 1286-1301

Blackman CJ, (2018) 'Leaf turgor loss as a predictor of plant drought response strategies', Tree Physiology, vol.38, no.5, pp 655-657

Blackman CJ, Gleason SM, Cook AM, Chang Y, Laws CA, Westoby M, (2018) 'The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates', Annals of Botany, vol.122, no.1, pp 59-67

Creek D, Blackman CJ, Brodribb TJ, Choat B, Tissue DT, (2018) 'Coordination between leaf, stem, and root hydraulics and gas exchange in three arid-zone angiosperms during severe drought and recovery', Plant Cell and Environment, vol.41, no.12, pp 2869-2881

Drake JE, Tjoelker MG, Varhammar A, Medlyn BE, Reich PB, Leigh A, Pfautsch S, Blackman CJ, Lopez R, Aspinwall MJ, Crous KY, Duursma RA, Kumarathunge D, De Kauwe MG, Jiang M, Nicotra AB, Tissue DT, Choat B, Atkin OK, Barton CVM, (2018) 'Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance', Global Change Biology, vol.24, no.6, pp 2390-2402

Gleason SM, Blackman CJ, Gleason ST, McCulloh KA, Ocheltree TW, Westoby M, (2018) 'Vessel scaling in evergreen angiosperm leaves conforms with Murray's law and area-filling assumptions: implications for plant size, leaf size and cold tolerance', New Phytologist, vol.218, no.4, pp 1360-1370

Gleason SM, Stephens AEA, Tozer WC, Blackman CJ, Butler DW, Chang Y, Cook AM, Cooke J, Laws CA, Rosell JA, Stuart SA, Westoby M, (2018) 'Shoot growth of woody trees and shrubs is predicted by maximum plant height and associated traits', Functional Ecology, vol.32, no.2, pp 247-259

Li XM, Blackman CJ, Choat B, Duursma RA, Rymer PD, Medlyn BE, Tissue DT, (2018) 'Tree hydraulic traits are coordinated and strongly linked to climate-of-origin across a rainfall gradient', Plant Cell and Environment, vol.41, no.3, pp 646-660

Li XM, Blackman CJ, Rymer PD, Quintans D, Duursma RA, Choat B, Medlyn BE, Tissue DT, (2018) 'Xylem embolism measured retrospectively is linked to canopy dieback in natural populations of Eucalyptus piperita following drought', Tree Physiology, vol.38, no.8, pp 1193-1199

Taylor SH, Aspinwall MJ, Blackman CJ, Choat B, Tissue DT, Ghannoum O, (2018) 'CO2 availability influences hydraulic function of C3 and C4 grass leaves', Journal of Experimental Botany, vol.69, no.10, pp 2731-2741

Aspinwall MJ, Jacob VK, Blackman CJ, Smith RA, Tjoelker MG, Tissue DT, (2017) 'The temperature response of leaf dark respiration in 15 provenances of Eucalyptus grandis grown in ambient and elevated CO2', Functional Plant Biology, vol.44, no.11, pp 1075-1086

Aspinwall MJ, Varhammar A, Blackman CJ, Tjoelker MG, Ahrens C, Byrne M, Tissue DT, Rymer PD, (2017) 'Adaptation and acclimation both influence photosynthetic and respiratory temperature responses in Corymbia calophylla', Tree Physiology, vol.37, no.8, pp 1095-1112

Blackman CJ, Aspinwall MJ, Tissue DT, Rymer PD, (2017) 'Genetic adaptation and phenotypic plasticity contribute to greater leaf hydraulic tolerance in response to drought in warmer climates', Tree Physiology, vol.37, no.5, pp 583-592

Blackman CJ, Aspinwall MJ, Resco de Dios V, Smith RA, Tissue DT, (2016) 'Leaf photosynthetic, economics and hydraulic traits are decoupled among genotypes of a widespread species of eucalypt grown under ambient and elevated CO2', Functional Ecology, vol.30, no.9, pp 1491-1500

Blackman CJ, Pfautsch S, Choat B, Delzon S, Gleason SM, Duursma RA, (2016) 'Toward an index of desiccation time to tree mortality under drought', Plant Cell and Environment, vol.39, no.10, pp 2342-2345

Gleason SM, Blackman CJ, Chang Y, Cook AM, Laws CA, Westoby M, (2016) 'Weak coordination among petiole, leaf, vein, and gas-exchange traits across Australian angiosperm species and its possible implications', Ecology and Evolution, vol.6, no.1, pp 267-278

Mitchell PJ, O'Grady AP, Pinkard EA, Brodribb TJ, Arndt SK, Blackman CJ, Duursma RA, Fensham RJ, Hilbert DW, Nitschke CR, Norris J, Roxburgh SH, Ruthrof KX, Tissue DT, (2016) 'An ecoclimatic framework for evaluating the resilience of vegetation to water deficit', Global Change Biology, vol.22, no.5, pp 1677-1689

Blackman CJ, Gleason SM, Chang Y, Cook AM, Laws C, Westoby M, (2014) 'Leaf hydraulic vulnerability to drought is linked to site water availability across a broad range of species and climates', Annals of Botany, vol.114, no.3, pp 435-440

Gleason SM, Blackman CJ, Cook AM, Laws CA, Westoby M, (2014) 'Whole-plant capacitance, embolism resistance and slow transpiration rates all contribute to longer desiccation times in woody angiosperms from arid and wet habitats', Tree Physiology, vol.34, no.3, pp 275-284

Jordan GJ, Brodribb TJ, Blackman CJ, Weston PH, (2013) 'Climate drives vein anatomy in Proteaceae', American Journal of Botany, vol.100, pp 1483-93

Blackman CJ, Brodribb TJ, Jordan GJ, (2012) 'Leaf hydraulic vulnerability influences species' bioclimatic limits in a diverse group of woody angiosperms', Oecologia, vol.168, pp 1-10

Blackman CJ, Brodribb T, Jordan GJ, (2010) 'Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms', New Phytologist, vol.188, pp 1113-1123

Blackman CJ, Brodribb TJ, Jordan GJ, (2009) 'Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species', Plant, Cell and Environment, vol.32, pp 1584-1595