

Centre for Smart Modern Construction

c4SMC INTER-UNIVERSITY ACADEMIC ROUND TABLE

14th November 2018

Reinventing OSCM & the role of Lean Thinking Marton Marosszeky

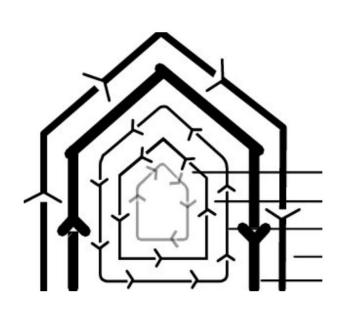
Director, Marosszeky Associates PL

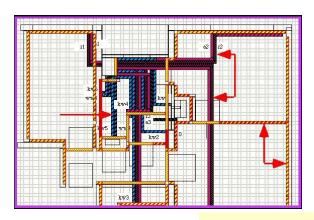
Member c4SMC Industry Advisory Team

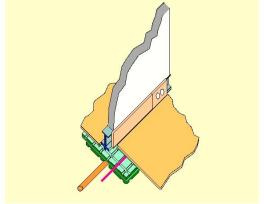
OVERVIEW

- 1. Introduction—the opportunity for Universities
- 2. History revisited: 1st wave 1960-80: 2nd wave post 1980
- 3. issues for OSCM
- 4. Challenges for universities—your tacit contract with the public
- 5. The potential of Lean Quality
- 6. Lean quality driving change

EVRY ESSONE-PARIS NEW TOWN BUILT 1960S IGECO


ERNST GOHNER AG SWISS VILLAGES FROM MOBILE FACTORY




HABITAT 67 MONTREAL—MOSHE SAFDIE: EXPO 67

2nd Wave thinkers—Brandt, Habraken

2nd Wave products:

- Haller
- Henggeler
- Peikert
- Project homes
- The modern office building

FRITZ HALLER-USM; MINI, MIDI AND MAXI & FURNITURE

Conextech—the hive concept

SUMMARY

- First wave of OSCM—Post WWII 1960—77: Mass production
 - Huge demand and a shattered industry
 - Design and production was manufacturing led
 - On projects with >1,000 dwellings a 10% saving was realised
 - The product was boring and rejected by consumers
 - Experimentation Habitat and
- Second wave of OSCM—post 2000: mass customization
 - Brandt, Habraken, Henggeler, Peikert
 - Light and heavy weight material alternatives—modules and panels
 - Flexible design for adaptable through WOL

CHALLENGES FOR UNIVERSITY EDUCATORS

Your tacit contract with society

Shaping the future rather than reteaching the past

Lean quality—NOT just compliance but innovation and improvement

Lean Thinking drives a continuous search for improvement

THE PURPOSE OF LEAN

To continuously improve customer service & product quality

Lean applies to everything

DISPELLING SOME MYTHS

- 1. Lean is a set of tools
- 2. Lean is the elimination of waste—whose waste?
- 3. Lean applies to repetitive processes

Lean is a framework for thinking about everything

THE HALLMARK OF A LEAN ORGANISATION

plans are realised

each week is an improvement on the last

yet BAU =

HOW DO LEAN ORGANISATIONS DRIVE CHANGE?

THEY

- Understand their customers feedback
- Constantly scan and adopt best technologies
- Strive to eliminate the RIGHT waste
- Drive improvement from the shop floor
- Measure performance
- Learn from every mistake

WORKERS FIND WASTE—JBH

JE HENDERSON NAME:				
DATE: SUPERVISOR:				
PLACE AN "X" ON THE IDENTIFIED WASTE, CHOOSE ALL THAT APPLY				
0	D	0	W	N
RI			\square	Ĥ
4	DEFECTS	OVER PRODUCTION	WAITING	NON-UTILIZED TALENT
U	Т		14	E
			(1)	
Z	TRANSPORT- ATION	INVENTORY	MOTION	EXTRA PROCESSING
DESCRIPTION OF WASTE:				
-				
A				
*				
	Continue —			Continue —

STANDARDISE + ORGANISE

DPR USE OF BIM TECHNOLOGY

IDEAS FROM THE SHOP FLOOR—SOUTHLAND

 Workers share 2 minute videos of successful innovative ideas

- Photo shows customised trolley for moving unpacked WC pans to site;
- Packaging does not even get to site

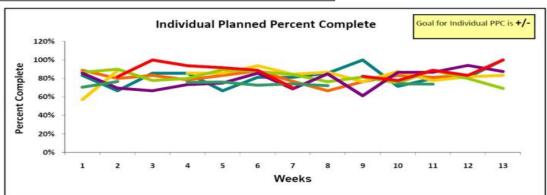
VISUAL WORKPLACE

Interactive problem solving —

Oversight of a program of work

Charting performance





BOULDER ASSOCIATES-ARCHITECTS COMMITMENT RELIABILITY

First 3 months

Second 3 months

CASE STUDY BAKER CONCRETE

the lean team.....

- •Safety 65% Baker norm
- Formwork **rental** 75%
- Equipment **rental ■** 29%
- •Formwork **productivity** walls **1** 29% columns **1** 61%
- •Overall **labour productivity** 12%
- •19% faster than plan

Baker built 2 buildings side by side and compared performance between **Business as Usual** and **LEAN**

SUTTER \$309M EDEN MEDICAL CENTER—2012

- Ahead on schedule
- Under budget
- 30% less site time
- Labour productivity up 6%
 - And 5-20% above trade baselines
- Rework 15-80% below baselines
- Mech/Hydraulic to the model 99%
- Electrical to the model 71%
- Framing to the model 79%
- Fewer RFI's & Change Orders
- Fewer failed inspections

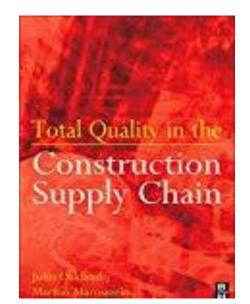
LEAN THINKING DRIVING CHANGE EDUCATION AND PRACTICE

- Differing levels of collaboration—Integrated Project Delivery IPD
- Designing to a cost— Target Value Design TVD
- Finding ideas to drive innovation—Value Stream Mapping VSM
- Work as a result of language—Collaborative planning LPS
- A taxonomy of waste—Waste identification
- Trial and refine before build—Prototyping
- Capture attention, focus on performance—Visual management
- Everyone with the same 3D information—BIM on site

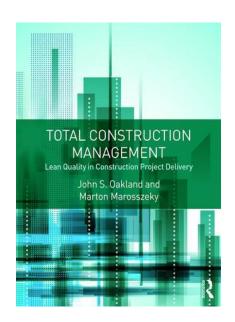
LEAN—QUALITY

- The industry is broken
 - Neither clients or contractors effectively extract value from their suppliers
 - All parties simply buy better hammers—but who is cracking the industry nut—NO ONE
- A framework for driving change at every level
 - Industry
 - Enterprise
 - Project

CRITICAL ISSUES FOR CONSTRUCTION BUSINESSES


- Educated clients vs product customers
- OSCM needs a **pipeline** of work
- Clarity about risk allocation
- Revisioning GC and SC roles
- Technology adoption
- User centric initial & WOL flexibility
- User centric initial & WOL flexibility

- Investment in planning up front
- End to end supply chain innovation
- LOGISTICS—local and global
- Systems integration
- Develop all parts in sync
- Minimum time on site
- Standards & financier acceptance


TOTAL QUALITY

in the Construction Supply Chain—2006

TOTAL CONSTRUCTION MANAGEMENT

Lean Quality in Construction Project Delivery—2016

25 case studies of extraordinary enterprises and projects

